در این فصل برخی مفاهیم و نتایج در مورد مجموعههای ناهموار و مجموعههای ناهموار (فازی) كه در سایر فصول مورد استفاده قرار میگیرد را ارائه میكنیم.
برای كسب اطلاعات جامعتر در مورد این مفاهیم به [2] و [3] و [6] و [1] و [15] مراجعه شود.
2-1- مجموعههای ناهموار
1-2-1- یادآوری
– به گردایهای از اشیاء دوبدو متمایز مجموعه گوئیم.
– اگر A,B دو مجموعه باشند به ضرب دكارتی A در B گوییم.
– هر زیر مجموعهی یك رابطه از A به B نامیده میشود. اگر A=B باشد، به هر زیر مجموعه یك رابطه روی A گفته میشود. اگر R رابطهای روی A باشد و مینویسیم aRb.
– اگر R رابطهای روی A باشد، وارون R به صورت و متمم R به صورت نمایش داده میشود.
– رابطهی R روی مجموعهی A بازتابی است یعنی:
– رابطهی R روی مجموعهی A تقارنی است یعنی:
– رابطهی R روی مجموعهی A ترایایی است یعنی:
– رابطهی R روی مجموعهی A همارزی است یعنی، بازتابی، تقارنی و ترایایی است.
– اگر R رابطهی همارزی روی مجموعه A باشد، به كلاس همارزی a یا كلاس همارزی R تولید شده توسط a گوییم.
– فرض كنید U یك مجموعهی مرجع ناتهی باشد. مجموعهی توانی U را با P(U) نمایش میدهیم.
– برای هر ، متمم مجموعهی X را با XC نشان میدهیم، كه بهصورت UX تعریف میشود.
2-2-1- تعریف [1]
زوج كه در آن و یك رابطهی همارزی روی U است، یك فضای تقریب نامیده میشود.
3-2-1- تعریف [1]
فرض کنید یک فضای تقریب دلخواه باشد، برای تعریف تقریب ناهموار، نگاشت را تعریف میكنیم، با ضابطهی:
می باشد كه به طوریكه و را تقریب ناهموار پایینی از X در مینامیم و را تقریب ناهموار بالایی از X در مینامیم.
[1] . Zdislow Pawlak
[2] . Z. Bonikowaski
[3] . R. Biswas
[4] . S. Nanda
[5] . N. Kuroki
[6] . J. N. Mordeson
[7] . V. Leoreanu
[8] . D. Dubois
[9] . H. Prade
[10] . B. Davvaz